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Optical system design and integration of the Mercury Laser Altimeter
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The Mercury Laser Altimeter (MLA), developed for the 2004 MESSENGER mission to
Mercury, is designed to measure the planet’s topography via laser ranging. A description
of the MLA optical system and its measured optical performance during instrument-level

and spacecraft-level integration and testing are presented.

1. Introduction

The Mercury Laser Altimeter (MLA) is one of seven scientific instruments on board the
MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER)
spacecraft, the first orbiter mission to the planet Mercury. MESSENGER is scheduled to
launch in August 2004 and arrive at Mercury in March 2011 for a one-year (four Mercury
years) study. The MLA laser time-of-flight measurement together with the spacecraft
orbit positional data will help determine the planet’s surface elevation, libration, and
internal structure [1-3]. MLA was designed and developed at NASA’s Goddard Spaée
Flight Center (GSFC) over a period of two and a half years and delivered to The Johns
Hopkins University Applied Physics Laboratory (JHU/APL) on June 30, 2003, for
spacecraft-level integration. This paper describes the optical system and the optical
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integration and testing of MLA.




1. Instrument Description

MLA'’s top-level optical specifications are listed in Table 1. The transmitter and receiver
specifications are based on experience with earlier space-based laser altimeters, such as
the Mars Orbiter Laser Alumeter (MOLA) and the Geoscience Laser Altimeter System
(GLAS), but modified for the MLA ranging geometry, the low planet albedo, and the
high infrared (IR) flux and Solar backgronnd of Mercury [4]. MLA has to perform range
measurements from a distance of up to 800 km, at a slant angle of up to 53°, and in
daytime during part of the mission, all of which drove the laser energy, the laser
divergence, and the receiver telescope aperture requirements. The laser repetition rate
was constrained by available instrument power. The receiver telescope field-of-view
(FOV) specification was a compromise: the FOV is narrow enough to make solar
background noise negligible during most of the MESSENGER orbits and wide enough to
allow for a reasonable instrument boresite alignment margin.

An assembly drawing of MLA is shown in Figure 1. The MLA structure is made
of optical-grade beryllium for its low mass, high stiffness, and high thermal capacitance.
The beryllium components were designed in-house and fabricated by Axsys
Technologies. The Main Housing holds the electronic sub-assemblies and serves as an
optical bench for the Laser Transmitter and the four Receiver Telescopes. The Laser
Transmitter [5] is built on a small beryllium bench that mounts to the Main Housing
center compartment. An external 15X beam expander telescope mounted to the laser
bench sets the final transmitted laser beam divergence. A Reference Cube attached to the
Main Housing is used to monitor the laser pointing angle during MLA integration and
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environmentai testing and to transfer the MLA iaser alignmeni information to the




spacecraft coordinate system. The four MLA Receiver Telescopes are mounted on the
corners of the Main Housing. The output signal from each telescope is fiber-coupled to
the Detector/Aft-Optics assembly mounted underneath the Main Housing. The
Detector/Aft-Optics assembly combines, filters, and re-images the output from all four
fiber optics onto a single SiAPD detector. The fiber optics are all the same length for
return pulse timing reasons and arc routed and secured along delrin channels attached to
the outer edge of the Main Housing underside. MLA is mounted to the MESSENGER
composite instrument deck via three titanium flexures, and the structure is fully enclosed
by thermal blankets such that only the five optical apertures remain open to the external
environment.

The main factors that drove the opto-mechanical design of MLA were the tight
constraints on instrument mass (7.3 kg), volume (300 x 300 x 300 mm), and peak power
(23 W) and the challenging mission thermal environment. MESSENGER will be in a
12-hour, highly eccentric elliptical orbit around Mercury [6] with only a 30-45 minute
MLA science measurement period over the planet’s northern hemisphere where the
surface temperature can range from 110°K on the planet’s dark side to over 700°K on the
sub-Solar region [7]. During the balance of the orbit, MLA cools off by radiating heat to
deep space. MLA will be “thermal cycled” in this fashion over 700 times during the
course of the MESSENGER mission. Figure 2 shows the predicted instrument
temperatures at the beginning and end of the operational science phase for the
MESSENGER 280° true anomaly orbit (TA280), a noon-midnight orbit close to the
MESSENGER “hot” case. The MLA optical system is required to operate over a wide

temperature range, in a non-steady-state, and with large thermal gradients. The




instrument design constraints and mission thermal environment required an integrated
optical, mechanical, and thermal instrument design.

The MLA optical alignment requirements are listed in Table 2 and are divided
into integration, alignment, and stability requirements. The ML A opto-mechanical design
philosophy was to minimize the number of sub-assembly and instrument level
adjustments required to align the instrument in order to better ensure alignment stability.
The optical and mechanical components were toleranced such that upon initial instrument
integration the boresite error between the laser and the four receiver telescopes was less
than the +2 mrad receiver telescope line-of-sight adjustment range. Laser pointing
knowledge and stability relative to the MESSENGER instrument deck are key alignment
parameters since this information is used to determine the laser footprint location on the
planet surface. Once the instrument was integrated and the boresite alignment completed,
the pointing angle stability of the transmitted laser beam and the boresite alignment of the
Receiver Telescopes were measured and tracked during the MLA and MESSENGER

environmental test programs.

3. Receiver Telescope

The four MLA Receiver Telescopes have a combined aperture of 417 cm’ and a 400 prad
diameter nominal FOV. The collecting area is equivalent to a single 0.25-m diameter
telescope with a 15% secondary and spider obscuration factor. The original MLA
receiver concept was based on a scaled-down version of the beryllium Cassegrain
telescopes used on MOLA (0.5-m diameter) and GLAS (1.0-m diameter), but once the

MESSENGER thermal environment was better understood it became apparent that this




telescope would not meet the MLA on-orbit performance requirements. Although the
MOLA and GLAS telescopes are athermal (to 1* order) under a bulk temperature change,
they are very sensitive to axial and radial thermal gradients due to the high coefficient of
thermal expansion (CTE) of beryllium and the large longitudinai magnification and fast
primary of the Cassegrain telescope design [8]. The multi-aperture, refractive MLA
Receiver Telescope design is not athermal, but this optical design can handle thermal
gradients an order of magnitude larger than an equivalent beryllium Cassegrain telescope
for a comparable amount of image degradation. The MLA Receiver telescope operating
thermal range is 20°C + 25°C and the survival thermal range is -30°C to +60°C.

The optical layout of the MLA Receiver Telescope is shown in Figure 3. The
telescope is a four-element reverse telephoto design with a 500-mm focal length, a
300-mm unfolded path length, and a final speed of f/4.35. The plano-convex objective
lens is made of sapphire and has a focal length of 230 mm, a diameter of 125 mm, and a
mounted clear aperture diameter of 115 mm. Sapphire was selected for all the optics
exposed to the Mercury environment for its ability to withstand thermal shocks [9], its
lower absorption in the IR compared to optical glasses, and its resistance to radiation
darkening. Although sapphire is birefringent and can generate double images, its imaging
performance is adequate for the MLA receiver “photon bucket”. Ten high-purity,
synthetic sapphire blanks were manufactured by Crystal Systems and the blanks ground
and polished into lenses by Meller Optics. A negative focal length triplet lens group
increases the focal length of the objective lens and corrects spherical aberration and
coma. The triplet was manufactured out of radiation-resistant Schott BK7G18 by

Optimax Systems. The telescope is foided in order to fit within the ailocated MLA



volume, which also helped reduce the cantilevered mass. The dielectric fold mirror only
reflects a small spectral band centered at 1064 nm, which provides protection against an
accidental view of the Sun since most of the visible solar radiation will go through the
fold mirror and scatter off its frosted backside onto the MESSENGER instrument deck.

A picture of one of MLA Receiver Telescopes is shown in Figure 4. Each of the
four tclescopes is identical except for the clocking orientation of the section folded
underneath the Main Housing. The telescope tube, the mirror mount, and the fiber mount
are made of optical-grade beryllium. The lenses are clamped in place with titanium
flexures and the pre-load adjusted by machining the thickness of an internal spacer. The
clearance between the lenses and the tube bore is only 25 pum on the radius in order to
minimize vibration-induced boresite shifts. The fold mirror is bonded into place with
space-qualified GE RTV566. The optical and mechanical components were toleranced
such that upon initial integration, the telescope optical axis was perpendicular to its
mounting flange to within 1 mrad. The only Receiver Telescope optical adjustment is at
the fiber-optic connector where a shim can be adjusted to set focus and the connector de-
centered on oversized mounting holes to adjust the telescope line-of-sight over a
+ 2 mrad range. Each Receiver Telescope assembly weighs 740 g, driven mostly by the
400-g sapphire objective.

A 200-um core diameter, 0.22 NA, multimode, step-index fiber-optic assembly at
the focal plane of each telescope yields the 400-urad diameter FOV. The fiber-optic
assemblies are similar to the ones flown on GLAS, and were fabricated in-house at
Goddard’s Advanced Photonic Interconnection Manufacturing Laboratory (Code 562).

Key requirements for the fiber-optic assemblies were that the fibers be well centered (+



10 pm) on their connectors and that the fiber connector interface be repeatable in both
focus (+ 10 um) and de-center ( 5 pm) in order to allow for replacement of the fiber
optics without the need to re-focus or re-boresite the MLA Receiver Telescopes.
Diamond AVIMS connectors were selected for this application because they provide a
keyed, repeatable, and rugged interface. All the fiber ends were anti-reflection (AR)
coated at 1064 nm by Denfon Vacuum to increase their average transmission to $7%.
300-um core diameter fiber optics providing a 600-urad diameter FOV were also
fabricated and tested in case instrument-level environmental testing indicated that we
needed the additional boresite alignment margin. The Receiver Telescope and the
Detector/Aft-Optics assembly were designed to operate with either fiber size. The
completed fiber-optic assemblies were tested for vacuum, temperature, vibration, and
radiation effects [10] prior to instrument integration.

As mentioned earlier the MLA Receiver Telescope design is not athermal. Opto-
thermal analysis using both paraxial equations and optical design software (Zemax)
showed that the refractive telescope design could tolerate a + 30°C bulk temperature
change before its blur circle diameter increased to ~100 um or ~200 prad. The net effect
of the thermal de-focus is that the telescope nominal top-hat FOV becomes trapezoidal
(Figure 5); all FOV plots have the same 400-prad full-width-at-half-maximum (FWHM)
but the FOV size above 90% normalized transmission is only half as wide with the
telescope at +50°C (or at -10°C) as it is at the nominal telescope alignment temperature
of 20°C. The main reason for the telescope thermal de-focus is the large and positive
do/dT (change in index of refraction with temperature) of sapphire which makes the

telescope focal length shrink as the telescope tube expands with increasing temperature




and vice versa. We could not find a suitable set of optical and mechanical materials that
could athermalize the telescope while still meeting all the other MLA Receiver Telescope
design requirements. The opto-thermal performance of the MLA Receiver Telescope is
adequate, but it does reduce our boresite alignment margin during the hot MESSENGER
noon-midnight orbits.

During the noon-midnight orbits the IR flux from Mercury into each Receiver
Telescope aperture can be up 40 W. The sapphire objective lens will absorb ~50% of this
IR flux and transmit the balance to the telescope tube. Since MLA is not nadir-pointing
during these orbits the inside of the telescope tubes will not be symmetrically illuminated.
We used a combination of optical and thermal computer-aided-design (CAD) programs
to model the telescope thermal profile during the TA240 orbit, another noon-midnight
orbit close to the MESSENGER “hot” case. The goal of the opto-thermal analysis was to
calculate the thermally induced receiver boresite shift due to the asymmetric telescope
tube illumination. Custom sofitware interfaces were developed by Lambda Research Inc.
(TracePro, Optical Software for Layout and Optimization or OSLO) and Harvard
Thermal Inc. (Thermal Analysis System or TAS) to transfer information between the
codes. The Receiver Telescope opto-thermal model accounted for both changes to the
objective lens shape and index of refraction and mechanical deformations of the
beryllium telescope tube. The thermal analysis was performed by Harvard Thermal Inc.
based on the calculated absorbed IR flux from the TracePro Mercury-MLA model. The
thermal analysis showed that the Receiver Telescope would develop the expected ~30°C
axial gradient plus a ~10°C radial gradient (Figure 6). The “perturbed” optical system
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image de-focused as expected, but the telescope line-of-sight change was only 15 prad,
which is small enough to neglect.

We fabricated five aluminum engineering model (EM) Receiver Telescopes, an
aluminum EM Main Housing, and a set of EM fiber-optic assemblies in order to develop
the receiver integration procedures and test setups, determine the optimum routing for the
fiber-optic assemblies, and troubleshoot any hardware interference issues. The EM
Receiver Telescope test program included characterizing the lens mounting flexures and
calculating the required thicknesses of the internal spacers to obtain the correct lens
mounting pre-loads, installing and focusing the fiber-optic assemblies including
compensating for operation in vacuum, measuring the telescope image quality (blur
circle) and FOV, measuring the telescope optical axis relative to its mounting flange,
measuring the telescope line-of-sight shift under different orientations to gravity,
performing survival and operational thermal tests, measuring the boresite effects of radial
thermal gradients on the telescope tube, and measuring the stray light characteristics of

the completed assembly. Figure 7 shows the change in the Receiver Telescope 200-um

fiber optic back-illuminated image and the receiver telescope 400-urad FOV between air
(1 ATM) and vacuum (0 ATM) operation. The test results at 0 ATM validated our
calculation of the shim thickness required bfor vacuum operation (we first focus the
system in air and then adjust the shim thickness per our calculated change in telescope
back-focal distance with pressure). The size and shape of the FOV plot at the in-focus
0 ATM setting also indicated that the telescope imaging performance was adequate and
that the as-fabricated focal length was correct. The testing of the EM Receiver

Telescopes validated our optical, mechanical, and thermal models and indicated that the



increased stiffness and lower CTE provided by the beryllium flight hardware were indeed
required to meet the MLA alignment stability and opto-thermal performance goals.

All optical substrates and coatings were space-qualified, and the opto-mechanical

parts inspected and precision cleaned prior to the flight integration of the MLA optical

assemblies. All optical materials, including the bandpass filter and the fiber-optic
assemblies, were tested before and after exposure to 50 krad of total ionizing gamma
radiation with no measurable difference in transmission at 1064 nm. The sapphire optics
were AR coated with a proprietary double layer AR coating from Quality Thin Films, and
coated witness samples were thermal cycled 100 times between -20°C and +70°C per
MIL-C-48497 and tested for adhesion and severe abrasion resistance per MIL-C-675-C
with no measurable degradation. AR-coated witness samples for the laser beam expander
optics were also tested and qualified for laser damage threshold level by Spica Inc. The
completed MLA flight optical assemblies were space-qualified per GSFC’s General
Environmental Verification Specification (GEVS) guidelines prior to instrument-level
integration and the flight integration process documented per GSFC’s ISO-9001
guidelines. Table 3 is a summary of the thermal qualification of the MLA optical
assemblies and their component sub-assemblies. A total of six flight Receiver
Telescopes, twenty flight Fiber-Optic assemblies, two flight Aft-Optics assemblies, and
two flight Laser Transmitter Telescopes were integrated, tested, and delivered to the

MLA instrument integration and test (I&T) team.
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4. Aft-Optics Assembly

The MLA Aft-Optics assembly collimates the output of each Receiver Telescope fiber-
optic, combines the four beams such that they go through a common bandpass filter, and
re-images all four fibers onto a single spot on a §.7-mm diameter SiAPD detector (Figure
8). We had previous experience with the detector (MOLA, GLAS) and with the narrow
bandpass filter (GLAS), but ﬁ;,.,r-ccup!ing the telescope to the detector was a new
approach for us. The main optical challenge was achieving a design that allowed for
coupling multiple fiber-optics onto a single detector; the design also had to be compact to
fit in the allocated space under the Main Housing.

The collimating lenses are 11-mm focal length Geltech aspheres with 2% cerium
added to the Corming C0550 substrate material to prevent radiation darkening. The two
imaging lenses are made from radiation-resistant Schott SF6G05 and have a combined
focal length of 18.6 mm. The optical system images the input fiber-optics at a 1.7X
magnification to yield a detector-illuminated spot size 0.34 mm in diameter. The
collimated beams have a divergence of + 9 mrad which is within the acceptance angle of
the bandpass filter, a 0.7-nm FWHM, two cavity, temperature-stabilized interference
filter from Barr Associates [11] with a peak transmission of 88% at 1064.4 nm. The angle
of incidence (AOI) of the collimated beams on the bandpass filter can be adjusted by up
to 3° off-normal by de-centering the Aft-Optics fiber-optic connectors in order to peak
the transmission at the MLA laser wavelength (1064.3 nm). A test fixture allowed for
coupling a portion of the MLA EM laser beam into the Afi-Optics assembly fiber-optics
while simultaneously monitoring the transmitted laser energy and the location of the fiber

images on the assembly focal plane in order to ensure that all four channels were
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wavelength-tuned to the MLA laser and imaged into a common spot. The Aft-Optics can
be aligned in air and operated in vacuum without any vacuum de-focus compensation
since the change in collimation and imaging with pressure is negligible. Thermal de-
focus and beam de-collimation over the thermal operating range is aiso smail and can be
neglected.

The Aft-Optics assembly is ~75 x 50 x 50 mm, weighs 204 grams, has an
operational thermal range of 20°C + 20°C, and a survival thermal range of -30°C to
+40°C. The mechanical components are titanium to match the CTE of the optics. The
BK7G18 fold prism and mirror are bonded with Scotch-Weld 2216 Grey epoxy and the
rest of the optics are held with retainer rings. The Aft-Optics assembly mates to the
beryllium detector bench via an interface plate that allows for focus and de-center
adjustment. The Aft-Optics assembly is aligned to the MLA detector by looking through
one of the fiber-optic connector ports with a small charge-coupled-device (CCD) camera
while the other three fibers illuminate the focal plane. The interface plate thickness is
adjusted until the detector image is in focus and the whole Aft-Optics assembly is de-
centered until the three illuminating spots are centered on the detector (Figure 9). After
the detector alignment is completed, the Aft-Optics fiber connectors and interface plate
are “liquid pinned” with Scotch-Weld 2216 Grey epoxy. The mated Detector/Aft-Optics
assembly (Figure 10) is then installed on the Main Housing and elecﬁic#lly integrated to

the detector power supply and signal processing electronics.
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5. Laser Transmitter Telescope

The Laser Transmitter Telescope is a 15X magnification, afocal beam expander with a
45-mm diameter output clear aperture. The magnification was derived from the
measured EM Laser Transmitter far-field divergence (~1.2 mrad @ 1/¢” diameter) and
the required final transmitted laser beam divergence (80 prad @ 1/e* diameter); the
output clear aperture was established by the beam expander magnification and the input
laser beam size (~2x2 mm). The MLA Laser Transmitter Telescope is designed to
operate over a 20°C + 40°C temperature range without any significant increase in the
transmitted laser beam divergence and to survive over a -30°C to +75°C temperature
range. The Laser Transmitter Telescope assembly (Figure 11) is 180 mm long, 56 mm
diameter (max.), and weighs 180 g.

The beam expander is a Galilean optical design with a Corning 7980 fused silica
negative lens, a BK7G18 positive lens group, and a sapphire exit window (Figure 12).
The sapphire window adds thermal-shock protection by adding thermal mass and
reducing the IR flux directly absorbed by the positive lens group. A non-sequential
raytrace analysis insured that no beam expander ghost beams were focused on any of the
beam expander or laser train optical surfaces. The mechanical design is similar to that of
the Receiver Telescopes: the beam expander tube is optical-grade beryllium, a titanium
flexure is used to mount the positive lens group and the sapphire window, and the
clearance between the lenses and the tube bore is only 25 um on the radius. The negative
lens is mounted in a small titanium cell with an internal shim to aliow for focus
adjustment. The optical and mechanical components were toleranced to achieve an

optical axis-to-mechanical mounting flange error of < 1 mrad in order to meet our
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instrument-level integration requirements. The beam expander dominates the pointing of
the transmitted laser beam since any laser angular input errors are reduced by a factor of
15 while a tilt of the Laser Transmitter Telescope assembly leads to an almost 1:1 change
[1:14/15 exactly] in the laser beam pointing angle.

The MLA beam expander design is not athermal, but its performance over
temperature is more than adequate. BK7G18 has a much smaller dn/dT coefficient than
sapphire, and the change in focal length of the positive lens'group with temperature
partially compensates for the change in beryllium tube length. An opto-thermal analysis
performed with the CODE V diffraction-based beam propagation module predicts a far-
field divergence of < 60 prad over the 20°C + 40°C operational thermal range. (The
nominal divergence at 20°C is only 50 prad because CODE V assumes an ideal M> =1.0
TEMOO input beam.) Since the sapphire window/BK7G18 lens comBination at the top of
the beam expander absorbs most of the IR flux from Mercury there is no asymmetric
1llumination of the beam expander tube that might lead to a line-of-sight change as was
the case with the Receiver Telescopes.

.We fabricated two aluminum EM Laser Transmitter Telescopes in order to
validate our optical, mechanical, and thermal models, develop the beam expander
integration procedure and test setups, and perform assembly-level testing with the EM
Laser Transmitter. The Laser ’Transmitter Telescope bolts to the laser bench, and the
laser beam is aligned to the beam expander with a set of Risley prisms (to adjust beam
angle) and tilt plates (to adjust beam de-center). After integration of the EM beam
expander to the EM Laser Transmitter the laser team discovered that feedback from the

beam expander de-stabilized the laser oscillator. The laser team increased the AOI on the
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beam expander to ~7.5 mrad and added a polarizer and ' waveplate to the laser optical
train to add optical isolation between the beam expander and the laser oscillator. After
these two changes were implemented the EM Laser Transmitter assembly performance
became nominal again.

The most difficult part of the beam expander integration process was setting focus
for 1064-nm, 0-ATM operation. A tolerance analysis showed that we needed to adjust
the negative lens spacing to an accuracy of about 25 uym. To achieve this accuracy we
first focused the beam expander for plane-wavefront output at 633 nm, 1 ATM using a
Zygo imterferometer. Because the distance between the laser beam waist and the beam
expander input optic is much less than the laser Rayleigh range, the Gaussian focal shift
is very small and can be ignored. For all practical purposes, the beam expander focal
setting that yields the lowest far-field divergence is the afocal setting. The
interferometer allowed for precise collimation at 633 nm, 1 ATM; we then adjusted the
beam expander lens spacing in several steps to obtain collimation at 1064 nm, 0 ATM.
The beam expander collimation procedure is described below.

The beam expander was setup in a double pass configuration with the positive
lens group facing the interferometer and the flat surface of the negative lens acting as the
reference mirror. By observing the transmitted wavefront amplitude and curvature
(convex vs. concave) and reproducing the observed wavefront error in CODE V we were
able to quickly converge on the required shim thickness for 633-nm, 1-ATM collimation.
We then measured the beam expander performance with a continuous wave (CW) HeNe
laser to confirm the focal setting established with the Zygo interferometer. The next step

was to adjust the shim thickness for 1064-nm, 1-ATM operation using the glass meit
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index-of-refraction data for the positive group lenses. We then confirmed the beam
expander new focal setting with a CW 1064-nm laser. One final shim thickness
adjustment was made to re-focus the beam expander for 0-ATM operation using a
pressure de-focus number calculated both paraxiaily and with Zemax. The completed
Laser Transmitter Telescope was then placed in a vacuum chamber and its performance
at 0 ATM verified with the CW 1064-nm laser. The ratio of the size of the laser far-field
images with and without the beam expander in the path verified that the assembly was
correctly focused for 1064-nm, 0-ATM operation (Figure 13).

Two flight model (FM) Laser Transmitter Telescopes were integrated, tested, and
delivered to the laser team. In addition to functional testing and thermal qualification, we
also performed a vibration qualification test to verify the alignment stability of the
mounted Laser Transmitter Telescope. We measured the beam expander optical axis
relative to the laser bench reference mirror before and after the vibe test. To measure the
beam expander optical axis, the assembly was placed between two theodolites with one
theodolite aligned to the laser bench reference mirror and the other one serving as a
surrogate laser beam (Figure 14). The “transmitter” theodolite focus was adjusted to
compensate for the beam expander residual optical power at 1 ATM such that its image
on the “reference” theodolite was in focus and de-magnified by 15X. (Care must be taken
that the beam expander assembly transverse position in the test setup be very repeatable
since the MLA FM beam expander is not afocal at 1 ATM.) The spare FM Laser
Transmitter Telescope assembly underwent 60 seconds of random vibration to a 6.8-
Grms level about all three axes. No measurable motion was observed between the beam

expander optical axis and the iaser bench reference mirror.
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6. MLA Optical Integration and Testing

The MLA instrument subsystems were sequentially integrated into the Main Housing:
first the mounting flexures and the Reference Cube were installed, then the electronic
sub-assemblies and electrical harnesses were integrated and tested; this was followed by
the integration and testing of the Laser Transmitter and the Detector/Aft-Optics
assemblies, and finally the Receiver Telescopes were attached and the fiber-optic
assemblies connected, routed, and secured. MLA was then installed on the alignment
ground support equipment (GSE) plate at which point the instrument was ready for
boresite alignment and instrument-level functional testing. A picture of MLA fully
integrated and mounted on the alignment GSE plate is shown in Figure 15.

Two key pieces of equipment were developed to boresite MLA: a collimator
system and a laser beam dump. The main collimator system optic is a 2.5-m focal length,
400-mm diameter Space Optics Research Labs (SORL) off-axis parabola (OAP). A 50:50
beamsplitter cube placed near the focal plane of the OAP generates two focal planes: one
focal plane has a target reticule and a CCD camera, while the other focal plane has a
1A064-nm single-mode (SM) fiber-optic source mounted on a computer controlled XY
stage. A second CCD camera looks at the two focal planes through the fourth optical
surface of the beamsplitter cube to verify that the target reticule.and the SM fiber source
are coincident and in focus. The purpose of the laser beam dump is to attenuate the MLA
laser output beam without changing its pointing angle or far-field divergence. The laser
beam dump reflects 90% of the MLA laser energy into a diffuser/lens/fiber assembly

used to monitor the MLA laser energy. The transmitted MLA laser beam is further
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attenuated using Schott KG glass absorpiion filters. The laser beam dump pick-oil
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beamsplitter and attenuation filters were custom made to have wedge angles < 5 prad
each. KG glass transmits in the visible so the laser beam dump assembly transmitted
wavefront and beam deviation error can be measured with an interferometer or a pair of
theodolites. The laser beam dump assembly met our line-of-sight deviation error goal of
< 10 prad after all the required attenuation filters were installed.

The MLA boresite alignment techniques and test set-ups were derived from those
developed for MOLA [12]. To boresite the instrument the MLA/GSE plate assembly is
installed on the collimator instrument stand with MLA looking down. Having the gravity
axis parallel to the instrument optical axis minimizes any gravity effects on the MLA
transmitter and receiver lines of sight. The MLA boresite procedure is straightforward:
first the MLA laser is attenuated with the laser beam dump and its output directed to the
center of the collimator target reticule, then the receiver telescope fiber optics are back-
illuminated at 1064 nm and the fiber-optic connectors de-centered until the four fiber-
optic images are centered on the collimator target reticule (Figure 16). (The laser and
receiver images are out of focus because the instrument alignment is performed at 1 ATM
while all the optical assemblies are focused for 0 ATM.) After the boresite alignment
procedure is completed the receiver telescope fiber-optic connectors are “liquid pinned”
with Scotch-Weld 2216 Grey epoxy. To verify the MLA boresite alignment, the FOV of
each receiver telescope is measured by moving the collimator SM fiber-optic source in
two orthogonal axes while recording the output of the MLA detector. Symmetric, well-
centered FOV cross-sectional profiles would indicate that the MLA receiver telescopes
are properly boresited to the MLA laser. The shape and size of all the FOV profiles were

as expected for 1 ATM, and all were within our +50 prad boresite alignment requirement.
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The combined cross-sectional FOV of all four MLA receiver telescopes is shown in
Figure 17.

Once the boresite alignment was completed the MLA instrument underwent
environmental qualification. The MLA instrument vibration test levels were 8.0 Grms
about the X and Y axes and 9.9 Grms about the Z axis, the instrument optical axis; the
full level random vibes lasted 60 seconds per axis. We measured the following MLA
alignment parameters before and afier the vibe test: (1) the pointing of the MLA laser
relative to the MLA Reference Cube, (2) the alignment of the MLA Reference Cube
relative to a reference cube bonded to the alignment GSE plate, and (3) the boresite
alignment of the four MLA Receiver Telescopes. We found no motion (< 10 prad)
between the MLA laser and the MLA Reference Cube and a small amount of motion
(~50 prad) between the MLA instrument and the alignment GSE plate. All the Receiver
Telescopes moved relative to the MLA Laser, but only telescope S/N 3 (T3) was
significantly out of its boresite alignment allocation after the vibration qualification test
(Figure 18). Although we found a small electronic cable lodged between the RMU/CPU
Housing and the back end of Receiver Telescope S/N 3, re-routing the cable did not bring
the alignment back. Further troubleshooting of the S/N 3 receiver telescope proved
inconclusive, so we decided to proceed with instrument-level thermal vacuum (TVAC)
testing before taking any action regarding the boresite alignment of the S/N 3 receiver
telescope.

The MLA TVAC test lasted several weeks and included both hot and cold cycles
that encompassed MLA’s survival and operational thermal ranges. The MLA TVAC test

configuration is shown in Figure 19. MLA is mounted on an Invar plate that simulates
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the MESSENGER low-CTE composite instrument deck. An aluminum frame holds the
Invar plate, a thermal target plate that simulates the IR heat load from Mercury, and an
optical target assembly. The optical target assembly is blanketed and temperature
controlled to insure its optical stability. A small tube goes from the MLA Laser
Transmitter Telescope to the optical target assembly to enclose the MLA laser beam and
prevent any scatter from saturating the very sensitive MLA detector during operational
tests. The optical target assembly performs several functions: a fiber-coupled diffuser
source is used to inject test signals into one of the Receiver Telescopes (S/N 1) to test the
MLA detector and ranging electronics, the laser beam dump is used to monitor the MLA
laser energy and attenuate the transmitted laser beam, and a lateral transfer retro-reflector
(LTR) and motorized set of Risley prisms flip the attenuated MLA laser beam back into
one of the receiver telescopes (S/N 4) to measure its FOV profile. In addition, a small
collimator/CCD camera system mounted outside the TVAC chamber is used to monitor
the pointing angle of the MLA laser relative to a reference cube mounted on the TVAC
fixture Invar plate.

The MLA laser pointing angle and divergence were very stable during the course
of the TVAC test. No MLA laser motions larger than ~50 prad were observed during the
test, even without correcting for motions and vibrations of the external collimator or the
TVAC chamber. FOV cross-sectional plots of Receiver Telescope S/N 4 were generated
during several hot and cold operating plateaus. This was done by plotting the MLA
detector received pulse width as a function of the MLA laser beam deviation angle
introduced by the optical target Risley prisms. (The detector pulse width is directly

—

correiaied to the detector incident energy aithough the reiationship is not linear.) The




full-width of the S/N 4 receiver telescope FOV cross-sections at 0 ATM was ~400 prad,
but the FOV edges were not as sharp as previously measured at the sub-assembly level
because the MLA laser is not a point source. All the FOV plots were well centered on
the MLA laser optical axis except for one trace that showed a 50 prad offset.

After the MLA TVAC test was completed we re-measured the instrument optical
alignment. We found no measurabie anguiar offset (< 10 urad) between the MLA laser
and the MLA Reference Cube and only small changes (< 50 urad) in the pre-TVAC
boresite alignment of the four Receiver Telescopes (Figure 20). Receiver Telescope S/N
3 was still out of its boresite alignment allocation so we debated whether to re-align the
telescope or increase the size of its fiber-optic assembly from 200 pm (400 prad) to 300
pm (600 prad) to regain boresite alignment margin. Swapping the fiber-optic assembly
was an easier operation but the larger fiber-optic would lead to ~30% higher Solar
background noise. We opted to re-align the S/N 3 telescope and to continue monitoring
its boresite alignment during MESSENGER lcvel cnvironmental testing.  The
MESSENGER vibration test levels and expected launch loads are lower than the MLA
vibration test levels, so we felt the risk was small that the S/N 3 telescope would move
significantly again. The final step of the MLA optical alignment procedure involved
measuring and documenting the angular alignment of the MLA laser relative to the two
side faces of the MLA Reference Cube that are used to transfer the MLA laser pointing

angle information to the MESSENGER spacecraft coordinate system.
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7. MLA Integration to MESSENGER

MLA was delivered to the JHU/APL MESSENGER spacecraft I&T team on June 30,
2003, and integrated unto the spacecraft on July 22, 2003. An Image of MLA installed
on the MESSENGER instrument deck is shown in Figure 21; the image was taken after
integration of the MESSENGER instrument-deck thermal blankets. Our tolerancing of
the MLA opto-mechanical components proved successful in that the MLA laser beam
was found to be aligned to the spacecraft coordinate system within 0.25 mrad and in
compliance with our co-boresite alignment requirement to the Mercury Dual Imaging
System (MDIS) instrument.

We continued to monitor the alignment and health of MLA during the course of
the MESSENGER spacecraft environmental qualification program. The optical target
assembly we used during the MLA instrument TVAC test was re-configured for MLA
spacecraft-level testing. The optical target assembly allowed us to monitor the following
parameters: (1) the response of the MLA detector and signal processing electronics to
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input optical test signals, (2) the MLA lascr encigy, and (3) the gnincnt of all
four MLA Receiver Telescopes to the MLA laser. In particular, we re-measured the
MLA boresite alignment after the MESSENGER spacecraft underwent vibration testing
(Figure 22) and after the spacecraft completed TVAC testing and arrived at the Astrotech
facilities in Titusville, FL, for launch preparations (Figure 23). Although both the
spacecraft-level vibration and TVAC tests led to MLA boresite alignment shifts, all four
MLA Receiver Telescopes are still within their boresite alignment allocation for launch.

All other MLA optical and electronic performance parameters remained nominal during
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8. Conclusion

MLA instrument-level integration and testing was completed on June 30, 2003, and
MESSENGER spacecraft-level integration and environmental testing was completed on
February 26, 2004. The MESSENGER spacecraft was successfully launched from
Launch Pad 17B at Cape Canaveral Air Force Station, Fla., on August 3, 2004 aboard a
three-stage Boeing Delta Il rocket. As of this writing, the MESSENGER spacecraft is on
its way towards the planet Mercury where it is expected to arrive and enter orbit in March
2011.
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Figure Captions:

L.

2.

8.

9.

MLA Assembly Drawing: a) Top View, b) Bottom View

MLA Thermal Model Predictions for TA280 orbit:
a) Beginning of Science Phase, b) End of Science Phase

MLA Receiver Telescope Optical Layout

MLA Receiver Telescope Assembly

. MLA Receiver Telescope Analysis: FOV vs. Temperature

MLA Receiver Telescope On-Orbit Temperature (TA240, End of Science)

MLA Receiver Telescope Vacuum De-focus Test Results
a) 1-ATM fiber image, b) 0-ATM fiber image, c) 1-ATM FOV, d) 0-ATM FOV

MLA Detector/Aft-Optics Optical Layout

MLA Detector Illumination Image

10. MLA Detector/Aft-Optics Assembly

11. MLA Laser Transmitter Telescope Assembly

12. MLA Laser Transmitter Telescope Optical Layout

13. MLA Laser Transmitter Telescope Far-Field Images at 0-ATM, 1064-nm

a) CW Laser only, b) CW Laser with MLA 15X Beam Expander

14. MLA Laser Transmitter Telescope Vibration Test Measurement Set-up

15. MLA Installed on Alignment GSE Plate

16. MLA Boresite Alignment: a) Laser Image, b) Receiver Telescope Images (4)

17. MLA Combined Receiver Telescope FOV Cross-Sections

18. MLA Boresite Alignment: Pre- and Post- Instrument Vibration Test

19. MLA TVAC Test Configuration

20. MLA Boresite Alignment: Pre- and Post- Instrument TVAC Test

21. MLA installed on MESSENGER Instrument Deck
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22. MLA Boresite Alignment: Pre- and Post- Spacecraft Vibration Test

23. MLA Boresite Alignment: Pre- and Post- Spacecraft TVAC Test
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Table Captions:

1. MLA Top-Level Optical Specifications

2. MLA Optical Alignment Requirements

3. MLA Optical Assemblies Thermal Quaiification Summary

Transmitter Receiver
Wavelength 1064 nm Aperture 417 cm®
Pulse Energy 20 mJ FOV (dia.) 400 prad
Pulse Width 6 ns Filter (FWHM) 0.7 nm, >80% T
Repetition Rate 8 Hz Detector (dia.) 0.7 mm SiAPD
Divergence (1/¢” dia.) 80 prad, TEM00 Stray Light off-axis < on-axis
A. instrument integration Spec
1 {Laser parallel to receiver telescopes <2 nvad
2 |1 aser perpendicuiar to MLA mounting plane <5 mrad
B. Instrument Alignment Spec
1 |Receiver telescopes boresite fo laser +/-50 pyrad
2 (Knowiedge of laser pointing angle (relative to MLA Reference Cube) +-50 yrad
C. Instrument Stability Spec
1 {Laser pointing angle (relative to MLA mounting plane) +/-50 yrad
2 |Receiver telescopes boresite to laser +/-100 yrad
Thermal Test Parameters
Optical Assembly Qty] PN _[Cydes| Range (°C) [Rate (°C/r)] Dwell (h)] Next Assembly
Receiver T 6 |2053182] 4 +60 to -30 +60/-20 40 Instrument
Foid Mirror Sub-Assembly] 6 |2053201] 2 +60 to -30 +60/-20 4.0 Receiver Teiscope
AR-Optics 2 20549701 4 +40 to -30 30 40 instrument
Mirror Sub-Assembly] 3 {2054991] 2 +60 to -30 30 40 Aft-Optics
Prism Sub-Assembly] 3 |2054971} 2 +60 to -30 30 4.0 Aft-Optics
Collimating Lens Sub-Assembly] 2 | 2054990 2 +40 fo -30 30 40 Aft-Optics
Focusing Lens Sub-Assembly] 2 | 2054798 2 +40 to -30 30 4.0 Aft-Optics
Fiber-Optics 3 12053208 90 +50 to -30 120 0.25 Instrument
Beam Expander 2 [2053322] 2 +75t0 -30 +60/-20 4.0 Laser Transmitter
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